Integral Domain

1 revision
#11 week ago
+6
Auto-generated stub article
+An **integral domain** is a non-trivial [Ring](/wiki/Ring) where multiplication is commutative, has a multiplicative identity, and, crucially, contains no [Zero Divisors](/wiki/Zero_Divisor). This structure extends the familiar arithmetic properties of integers to a more abstract setting, foundational in [Abstract Algebra](/wiki/Abstract_Algebra).
+## See also
+- [Field](/wiki/Field)
+- [Ring](/wiki/Ring)
+- [Unique Factorization Domain](/wiki/Unique_Factorization_Domain)
... 1 more lines